Introduction          3
Set-up                    4
Operation              9
Maintenance        11
References          12
Warranty              14

1. Base plate and chamber holder.
2. Left MM-33 Manipulator
3. Right MM-33 Manipulator
4. Spacer block (2)
5. Potential Head Stage Spacer
6. Anchors (2)
7. 50mm M6 screw with knob (2)
8. Current Head Stage Bracket
9. Chamber
10. Adjustable suction port
11. Pipette holders (2) (Optional)
12. Current Injection pipette holder extension
13. Reference electrode wires (2)

Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Set-up</td>
<td>4</td>
</tr>
<tr>
<td>Operation</td>
<td>9</td>
</tr>
<tr>
<td>Maintenance</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
<tr>
<td>Warranty</td>
<td>14</td>
</tr>
</tbody>
</table>
Introduction

The Xenoplace™ workstation is designed to be a simple yet comprehensive workstation for investigating the electrical properties of Xenoplace Oocytes, the egg of the African leopard frog. Oocytes are useful in electrophysiology and pharmacology research because the pre-emergent egg is basically a factory ready to make a frog, and therefore able to process a wide variety of RNA. As such it is very capable of processing the RNA that codes for membrane ion channels and can easily express those channels in the membrane of the egg. Since a typical egg is about 1mm across, millions to billions of channels can be expressed giving rise to large currents that can be more easily studied than in a neuron or other excitable tissue. The large size of the egg can give rise to other electrical problems that must be dealt with such as large capacitance and high current. A good amplifier such as the TEC 03 from npi makes the perfect system to use with the Xenoplace™ since it contains many of the features necessary to discriminate membrane currents and give accurate recordings.

The typical Xenoplace set-up consists of the TEC amplifier from npi and two MM-33 manipulators mounted on a base plate. The two manipulators are positioned so that electrodes can descend into a chamber to pierce an oocyte which can also be perfused, very easily with drugs, or other substances. The chamber, specifically, and the design layout were perfected by Lonnie Wollmuth in his lab at SUNY Stony Brook in Long Island, New York. The system provides two manipulators, one for the measuring electrode and one for the current injecting electrode. There is a unique channel with a dimple to hold the oocyte, and two reference electrode (AgCl pellets) are positioned adjacent to the dimple. Convenient plug-in connections allow the user to connect the reference electrodes to the head stage. Perfusion liquid entering the chamber is channeled directly at the oocyte. Fluid is removed via a suction port from just behind the oocyte, or from a Luer connection on the side of the chamber block. There is a pedestal catch basin that supports the chamber and serves to catch the liquid if the removal system should fail. A clip holds the current injecting head stage for convenience. All the components are tied to a common base plate for convenience and stability.
Setting up your Xenoplace

The workstation is very easy to assemble. First determine where you want to put it. A firm table or an anti-vibration table is preferred. You will also need a dissecting microscope. Make sure it has a long enough reach to be positioned over the chamber to provide a good view for impaling the oocyte. Start with the base plate. The base plate comes with the chamber base and four adjustable legs already mounted.

First you will have to mount the manipulators. Below, the right side manipulator is mounted.
Start with the 50mm M8 bolt with knob. Place that through the spacer block, through the mounting hole in the base plate, and into the anchor.

Spacer block is oriented with ridge down.

Mount the left one:

Tip stage on its side to insert screw into anchor, make only finger tight at this point. Then while the unit is tipped, mount the left side manipulator. Add the additional spacer for the left side. (The additional spacer allows the potential head stage additional freedom of movement for positioning.)

Both manipulators should now be mounted.

HINT: The anchors grab onto the bottom of the base plate when there is upward pressure, so be sure to pull up slightly on the knobs when tightening, until the anchors grab hold.
Next comes the chamber insertion. The chamber simply drops in. The infusion port, (small steel canula) should be away from you, the suction port, the adjustable one, should be toward the user.

The next step is to orient the electrodes into the chamber so that you can get the manipulators into their general positions. They will remain in the general position most of the time, requiring only small adjustments of the control knobs to change electrodes and penetrate the oocyte. The initial positioning will require you to slide the manipulators around on the spacers. The large holes in the base plate and the anchor system permit you to lock the manipulators in the best possible location. Leave them slightly loose for sliding, then turn the knobs tight to lock in.

Mount the Potential head stage on the left side, and the Current head stage on the right.

Install the pipette holders on both sides.

With the pipette holders in place, get the manipulators as close to aligned as possible. Then put electrodes into the pipette holders, and with the aid of a
dissecting microscope, orient the tips of the electrodes toward the dimple where the oocyte will be:

Put some water in the chamber and place an oocyte on the dimple. Get the electrodes to line up and pierce the oocyte.

Adjust manipulators as necessary to align the electrodes.

Once the best orientation is found, we suggest that you fix the black spacer block under each manipulator to the base plate using some silicone adhesive. If you do this, the manipulator bases will remain in a set position and you will be able to pivot them out and back easily for electrode changes. All you have to do is back the electrode out so it clears the chamber, then slightly loosen the black knob, and rotate the manipulator toward you or away from you as desired until the electrode is in free space and you are able to change it. After the change, rotate the manipulator back to position, tighten the black knob, and insert the electrode back into the oocyte.

The Potential Head Stage:
The chamber comes with two built-in reference electrodes. They will need to be connected to the potential head stage of the amplifier. There are 1mm pin cables that are provided.

Finally, the current head stage has a mounting bracket. It is mounted on the right side of the platform with a single screw. The bracket is screwed in with one screw, and then the head stage is mounted with a hold-down thumb screw to fix it in place. The cable from the electrode holder extension is plugged into this head stage.

On the bottom of the base plate there are adjustable feet to level the Xenoplate. They should be adjusted as necessary to keep the system level.
Operation

Operation of the amplifier is covered in its manual and the techniques for recording from oocytes are well described in the papers and book chapters in the reference section of the manual.

The Xenoplace™ workstation is very easy to set up each time you will perform a recording. First you will establish the suction line that will drain the chamber. The chamber can be evacuated in two ways, one is with the perfusion canula that is on the tilt device, the other is with the side port.

When using the suction canula, it should be noted that the tip has to touch the side wall of the chamber to improve suction. The canula is designed to be used with house vacuum, so it can make some vibrations, keeping the tip against the wall will help reduce that.

If you wish to use the side port, we recommend that it be combined with our Levelock™ system that includes our vacuum waste kit. The Levelock™ has a sensor that can be set to the surface of the fluid in the chamber, and it will regulate the fluid height to within .2mm, while the suction comes from the side port, below the surface of the fluid in the chamber, and thus not disturbing the fluid surface. Please contact your representative or ALA directly for information about the Levelock™ and the Vacuum Waste Kit.
The fluid input to the chamber comes from either an infusion pump, or a gravity fed reservoir, or a series of reservoirs. The input canula is supplied loose so that it can be adjusted to be either very close to the oocyte or a bit farther away. The closer it is, the more concentrated the output will be. We do not recommend using super glue or very strong epoxy. An epoxy that remains soft or RTV silicone is best since they will form a water tight seal but can be removed. (Vacuum grease is also good).

The input fluid should be able to be controlled, as in started, and stopped as necessary. Test your system by allowing fluid to flow in and then see that your suction tube can remove the fluid before it floods, and maintain a steady level. Once the fluid is established, you can put in an oocyte. Simply place it on the dimple just in front of the input canula. (remember that the chamber is designed to be used with the input canula facing away from the user)
The oocyte should stick to the dimple, then you can impale it with the electrodes. Check to see that the fluid level always stays above the top of the oocyte.

**Maintaining the system**

The system does not need that much maintenance, other than to keep it clean. Since much of the device is made of metal, you will want to wipe up all spills for salt solution as quickly as possible. Once corrosion has had a chance to set it, it can even be a source of electrical noise! The chamber itself should be washed out periodically, and mild detergent can be used for that. If necessary, 70% isopropanol can be used as well. Flush the chamber with distilled water as often as possible.

The reference electrodes will wear out eventually, and need to be replaced. For starters, as they get dirty, you can just gently scrape off the top layer to remove dirt and debris to expose fresh AgCl. After a while you will see a disk appear in the center of the pellet. The pellet will be noticeably shorter by this time, it means it needs to be changed. To change it, you will need to de-solder it, or cut the wire, from the socket. Then pull out the old pellet by removing the silicone adhesive that holds it in place.

When you put in the new pellet(s)push it up so it is just under the level of the bottom of the chamber, almost even with the bottom. We suggest using a small dab of silicone to get it to stay in place, then when it is dry, add more to complete the seal.

The dimple that holds the oocyte is also prone to fill up with debris after a while. Clean it out carefully with a needle. If you wish to replace it, the dimple is formed by a hole that passes right through the chamber. Just clean out all the RTV silicone with a pin, needle or small drill bit. To replace the silicone, inject it up from the bottom. Watch the top of the hole and when the silicone is about 1mm below the top, stop injecting. Let it cure for a day before using.

For any other questions or concerns, please contact ALA or npi. Please see the list of references for techniques and methods in oocyte research.
References

The Chamber


The npi TEC amplifier and Oocyte recording


**Oocyte Techniques (Book Chapters)**


Limited Warranty

ALA Scientific Instruments, Inc., warranties this system to be free of defects in workmanship for a period of one year from time of shipment. Remedy shall be limited to repair or replacement of the device or its components as necessary. Repair or replacement is up to the discretion of ALA Scientific Instruments. The user is responsible for return shipment to ALA for any warranty repairs. All returns must receive authorization prior to shipment.

Contact information:

Tel. 516 997 5780  
FAX. 516 997 0528  
support@alascience.com  
www.alascience.com

ALA Scientific Instruments, Inc.  
1100 Shames Drive, STE 110  
Westbury NY 11590 USA